
1

Unit Description Form

Course Description Form

Faculty of Engineering /

Department of

Biomedicine

Unit Information

Course Information

Unit Title Computer Science Unit delivery

Unit Type secondary
 نظريه ☒

 حاضر ☒

 المختبر ☒

 تعليمي ☐

ي ☐ عمل

 ☐ Seminar

Unit Code BME-12-04

ECTS Credits 8

SWL (ساعة /
SEM)

75

Unit level 2 Delivery Semester 2

Department of Administration
Biomedical
Engineering

College Faculty of Engineering

Unit
Commander

Fares Karim Haliwat
 mail -E

Address
 Faris.kar@uowa.edu.iq

Title of Unit Commander Assistant Lecturer Unit Commander Qualifications Master

Unit Teacher
 E-mail

Address

Peer Reviewer Name
 E-mail

Address
E-mail Address

accreditation of the Date of

Scientific Committee
26/9/2024 Version number 1.0

Relationship with other units

Relationship with other subjects

Prerequisites Unit No Semester

Common Requirements

Unit
No Semester

2

Unit objectives, learning outcomes and how-to contents

Course objectives, learning outcomes and instructional contents

Objectives of the Unit

Course Objectives

1. Teaching the basics of programming: Understand basic concepts such

as variables, conditional statements, and loops.

2. Proficiency in programming languages: Enable students to write

programs using languages such as C and C++.

3. Algorithm Design: Develop the ability to design effective algorithms

to solve software problems.

4. Understanding data structures: Learn how to use different data

structures such as arrays and lists.

5. Application of object-oriented programming (OOP): Teaching

object-oriented programming principles such as objects and classes.

6. Teaching debugging techniques: improving debugging and code

analysis skills.

7. Apply advanced programming concepts: Enable students to use

advanced programming libraries and frameworks.

Unit Learning
Outcomes

Learning outcomes of

the course

Understand programming principles: Gain knowledge of programming basics
such as variables, conditional statements, and loops.

Proficiency in programming languages: Ability to write programs using
languages such as C and C++.

Algorithm Design: Develop skills to design and implement effective problem-
solving algorithms.

Use data structures: Effectively apply data structures such as arrays, lists, and
trees.

Object-oriented programming (OOP): Understand and apply object-oriented
programming principles such as objects and classes.

Error analysis and correction: Develop debugging skills and improve code.
Apply advanced concepts: the use of software libraries and frameworks, and

the programming of multi-threaded applications.
1.

Indicative Contents

Indicative Contents

1. Basic programming concepts: Learn the basics of programming such as

variables, graphic types, and conditional structures.

2. C/C++ Programming: Learn C or C++ as an application development tool.

3. Algorithms: The study of how algorithms are designed and implemented to

solve software problems.

4. Data structures: Learn how to use structures such as threaded lists, arrays,

trees.

5. Object-oriented programming (OOP): Learn the principles of object-oriented

programming such as objects and classes.

6. Debugging: Techniques for finding and correcting errors in code.

7. Advanced concepts: Learn programming using libraries and frameworks, and

programming multi-threaded applications.

Learning and Teaching Strategies

Learning and Teaching Strategies

3

Strategies

1. Active Learning: Encourage students to actively participate by solving
exercises and problems themselves, enhancing their understanding of
mathematical concepts.

2. Collaborative learning: teamwork to solve mathematical problems, helping to
exchange ideas and develop analytical skills.

3. Project-based learning: Using applied mathematical projects that link
mathematics to everyday life, such as studying statistics or engineering
designs.

4. Ongoing Assessment: Conduct regular quizzes and exercises to track
students' progress and identify points that need to be strengthened.

5. Interpretation and Discussion: Encourage students to explain their solutions
and ways of thinking to stimulate deep understanding and improve
communication skills.

Student Workload (SWL)

The student's academic load is calculated for 15 weeks

SWL منظم (h / sem)
academic load of the student Regular

during the semester

35
SWL regulator(h/s)

Regular student load per week
5

SWL يمنظم (h / sem) غير

Irregular academic load of the student

during the semester

35
Unregulated SWL (h/s)

Irregular student academic load per week
5

ي SWL (h / sem) إجمال

The student's total academic load

during the semester

75

Unit Evaluation

Course Evaluation

As
Time/Number Weight (tags) Week due

Related learning

outcomes

Formative

Assessment

Contests 2 10% (10) 5, 10 LO #1 , 2, 10 and 11

Assignments 2 10% (10) 2, 12 LO #3 , 4, 6 and 7

Projects
/Laboratory.

1 10% (10) continuous every

report 1 10% (10) 13 LO #5 , 8 and 10

Final

Assessment

Midterm Exam 2 hr 10% (10) 7 LO #1-7

Final Exam 2 hours 50% (50) 16 every

Overall Rating 100% (100 degree)

4

 Grading chart

Grading chart

group degree Appreciation Tags (%) definition

Najah -An

Group
(50 - 100)

A - Excellent privilege 90 - 100 Outstanding Performance

B - Very Good Very good 80 - 89 Above average with some errors

C - Good Good 70 - 79 Proper work with noticeable errors

D - Satisfactory medium 60 - 69 Fair but with significant shortcomings

E - sufficient Acceptable 50 - 59 The work meets the minimum standards

Group failure
(0 – 49)

FX - Failed
Deposit (in

processing(
(45-49) More work required but credit granted

F - Failed Failure (0-44) Large amount of work required

Note: more than 0.5 decimal places greater than or below the full mark will be rounded higher or Signs that are

lower (for example, a score of 54.5 will be rounded to 55, while a mark of 54.4 will be rounded to 54. The

c failureuniversity has a policy of not tolerating "imminent traffi ", so the only modification to the marks granted by

the original mark(s) will be the automatic rounding described above.

