

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al_Anbiyaa....
College of Engineering
Oil and Gas Department

MODULE DESCRIPTION FORM

نموذج وصف المادة الدراسية

Module Information						
معلومات المادة الدراسية						
Module Title	Part <mark>i</mark> al	Differential Equa	tions	Modu	le Delivery	
Module Type		Basic	Ų ₃	@ (☑ Theory	
Module Code		ENG226			☐ Lecture	
ECTS Credits		75	1 700	□ Lab		
	<u> </u>				☑ Tutorial	
SWL (hr/sem)		125			☐ Practical	
					☐ Seminar	
Module Level		ugii 2017	Semester of Delivery		4	
Administering Dep	partment	OGE	College	ENG		
Module Leader Dr.dheiaa ham		nadi	di ujai e-mail		E-mail: Dheiaa.ha@uowa.edu.iq	
Module Leader's Acad. Title		Lecturer	Module Leader's Qualification		Ph.D	
Module Tutor		e-mail		E-mail		
Peer Reviewer Name			e-mail			
Scientific Committee Approval Date		01/06/2023	Version Number 1.0		1.0	

Relation with other Modules				
العلاقة مع المواد الدراسية الأخرى				
Prerequisite module	ENG212	Semester	3	
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents					
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims أهداف المادة الدراسية	Important objectives of the calculus sequence are to develop and strengthen students' problem-solving skills and to teach them to read, write, speak, and think in the language of mathematics. In particular, students learn how to apply calculus tools to a variety of problem situations.				
Module Learning Outcomes مخرجات التعلم للمادة الدراسية	 Find limits of functions (graphically, numerically, and algebraically) Analyze and apply the notions of continuity and differentiability to algebraic and transcendental functions. Determine derivatives by a variety of techniques including explicit differentiation, implicit differentiation, and logarithmic differentiation. Use these derivatives to study the characteristics of curves. Determine derivatives using implicit differentiation and use them to study the characteristics of a curve. Students will use a variety of methods to solve the Laplace and Poisson equations. 				

	5. Harmonic function characteristics will be examined by the students.				
	6. The heat and wave equations will be solved, and students will examine their characteristics.				
	7. The characteristic approach will be used by students to resolve first order partial differential equations.				
	8. Students will evaluate conservation laws' characteristics.				
	9. Students will examine some other nonlinear PDEs' properties if time allows.				
	1. To model and comprehend scenarios involving exponential				
	growth or decay and second order physical systems, use				
	established DE types.				
	2. Use a variety of input functions, such as zero, constants,				
	exponentials, sinusoids, step functions, impulses, and				
	superpositions of these functions, to solve the major equations.				
Indicative Contents	3. Use the characteristic equation, exponential response formula,				
المحتويات الإرشادية	Laplace transform, convolution integrals, Fourier series, complex				
	arithmetic, parameter variation, elimination, and anti-elimination				
	methods to solve the differential equations mentioned above.				
	4. Be able to solve linear DEs using the fundamental ideas of				
	linearity, superposition, and the existence and uniqueness of DE				
	solutions.				
Learning and Teaching Strategies					
استراتيجيات التعلم والتعليم					
	Highlight conceptual comprehension.				
Strategies	Assign homework that is difficult and builds on the lessons you gained in class.				
	Cooperative learning strategies ought to be applied.				

وصف المقرر الدراسي

- Submit intelligent queries.
- Put your focus on logical reasoning and practical problem-solving.
- Use a range of assessment techniques.

Student Workload (SWL)

الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا

Classic and CMU (b. / sec.)			
Structured SWL (h/sem)		Structured SWL (h/w)	
الحمل الدراسي المنتظم للطالب خلال الفصل	75	الحمل الدراسي المنتظم للطالب أسبوعيا	5
Unstructured SWL (h/sem)		Unstructured SWL (h/w)	
	47	, , ,	3
الحمل الدراسي غير المنتظم للطالب خلال الفصل		الحمل الدراسي غير المنتظم للطالب أسبوعيا	
Total SWL (h/sem)			
الحمل الدراسي الكلي للطالب خلال الفصل	125		

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #3 and 10
Formative	Assignments in collage	10	10% (10)	Continuous	All
assessment	Assignments in home	10	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO # 5
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)

المنهاج الاسبوعي النظري

	Material Covered
	Material Covered
Week 1	- General Review
Week 2	- Special Functions I
Week 3	- Special Functions I
Week 4	- Fourier Analysis and Series
Week 5	- Fourier Transform I WARITH
Week 6	- Inverse of Fourier Transform
Week 7	- Laplace Transform
Week 8	- Inver <mark>se</mark> of Laplace Transform
Week 9	 Methods of Solving PDE: (Direct integration method, Variables separable, Fourier Transform, Laplace Transform, ODE methods)
Week 10	- One Dimension Heat Equation, Two Dimension Heat Equation (Laplace equation) by Variable separable
Week 11	 One Dimension Heat Equation, Two Dimension Heat Equation (Laplace equation) by Transforms
Week 12	- One Dimension Wave Equation by Variable separable, Wave Equation: D. Alembert's formula
Week 13	- One Dimension Wave Equation by transforms
Week 14	- Single Phase Fluid Flow Equation Solution
Week 15	- Final Exam
Week 16	- The preparatory week before the Final Exam

Learning and Teaching Resources

مصادر التعلم والتدريس

	Text	Available in the Library?
Required Texts	 George B. Thomas, "THOMAS' CALCULUS", Eleventh Edition 2011, Dorling Kindersley (India). Spiegel, M. R. Schaums outline series, theory and problems of Lablace transform, copy write 1965 by Mc Graw-Hill Inc. Spiegel, M. R. Schaums outline series, theory and problems of Fourier analysis with application to boundary value problem, copy write 1974 by Mc Graw-Hill Inc. 	
Recommended Texts	 Ford , S.R. and Ford , J.R. " Calculus " , (1963) McGraw-Hill. K.Back house and S.P.T. Houldsworth " Pure Mathematics a First Course " (1979) , S1 Edition , Longman Group . Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons. Inc., 9th ed., 2006. 	
Websites	 1- https://en.wikipedia.org/wiki/Differential equation 2- https://byjus.com/maths/differential-equation/ 	

Grading Scheme

مخطط الدرجات

Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	جيد جدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد	70 - 79	Sound work with notable errors
	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria
Fail Group	FX – Fail	راس <mark>ب (قيد ا</mark> لمعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	WAR راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

