

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al_Anbiyaa....
College of Engineering
Oil and Gas Department

MODULE DESCRIPTOR FORM نموذج وصف المادة الدراسية

Module Information معلومات المادة الدراسية						
Module Title	Physics	s and Thermodyna	mics	Modu	le Delivery	
Module Type	11	Basic	miles O		☑ Theory	
Module Code		ENG225	3	6 0	☐ Lecture	
ECTS Credits		5	•••	ř.	□ Lab	
	700		180		☑ Tutorial	
SWL (hr/sem)		125			☐ Practical	
	اولللاء				☐ Seminar	
Module Level	Module Level UGII		Semester of Delivery		4	
Administering Department		OGE 2017	College			
Module Leader Asst.lect Yahya had		a hadi	e-mail	Yahya.hadi@uowa.edu		q
Module Leader's Acad. Title		Prof.	Module Lea	ader's Qualification		PhD
Module Tutor 2			e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	E-mail		
Scientific Committee Approval Date		01/06/2023	Version Number 1.0			

Relation with other Modules					
العلاقة مع المواد الدراسية الأخرى					
Prerequisite module	ENG212	Semester	3		
Co-requisites module	 It provides abroad foundation in the basic of science and engineering. 	Semester			

Module Aims, Learning Outcomes and Indicative Contents					
أهداف المادة الدراسية ونتائج التعلم والمحتويات الإرشادية					
Module Aims أهداف المادة الدر اسية	 The program has a strong emphasis on modern physics and its application to 21st century technology. Our program builds on the existing research and teaching strengths of the Physics and Materials Science Division in cross-cutting areas such as novel 21st century materials, materials for energy, macromolecules, quantum mechanics to devices, surfaces, interfaces, and nanostructures, and computation, and is flexible enough to grow together with the research base of our division. 				
Module Learning Outcomes					
مخرجات التعلم للمادة الدر اسية	1- Graduates will have substantial experience with laboratory methods, data analysis, and computation.				
Indicative Contents المحتويات الإرشادية	Engineering physics students will be well equipped to pursue research and development careers in new and emerging technologies such as properties of new materials, quantum electronics, nanofabrication and devices, quantum signal processing and quantum computing, related to emerging advances in electrical, mechanical and petroleum engineering.				

Learning and Teaching Strategies

استراتيجيات التعلم والتعليم

Strategies Active learning techniques methods

Λ					
Student Workload (SWL)					
الحمل الدراسي للطالب محسوب لـ ١٥ اسبوعا					
Structured SWL (h/sem)		Structured SWL (h/w)			
الحمل الدراسي المنتظم للطالب خلال الفصل	90	الحمل الدراسي المنتظم للطالب أسبوعيا	6		
Unstructured SWL (h/sem)		Unstructured SWL (h/w)			
الحمل الدراسي غير المنتظم للطالب خلال الفصل	37	الحمل الدراسي غير المنتظم للطالب أسبوعيا	2.5		
Total SWL (h/sem) الحمل الدراسي الكلي للطالب خلال الفصل	130				

Module Evaluation

تقييم المادة الدراسية

		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7
assessment	Projects /	1	10% (10)	Continuous	All
	Report	1	10% (10)	13	LO # 5, 8 and 10
Summative	Midterm Exam	2 hr	10% (10)	7	LO # 1-7
assessment	Final Exam	2hr	50% (50)	16	All
Total assessment		100% (100 Marks)			

Delivery Plan (Weekly Syllabus)						
المنهاج الاسبوعي النظري						
	Material Covered					
Week 1	History of nature science, electrical, charge, current.					
Week 2	Resistance, resistivity, galvanometer, ammeter, voltmeter.					
Week 3	Simple harmonic motion.					
Week 4	Kinetic and potential energy					
Week 5	Electric and magnetic properties of matter of ENG					
Week 6	Insulators, semiconductor, conductor, superconductor.					
Week 7	Diamagnetic, paramagnetic, ferromagnetic					
Week 8	Nanotechnology					
Week 9	Introduction: Zeroth law of thermodynamics: Definition of temperature, Zeroth law concept, Type of thermometers, Type of temperature scales, Kelvin experiment: gas thermometer					
Week 10	Ideal gas Equation: Properties of matter, Temperature effect on matter, Thermal expansion laws Macroscopic descr <mark>ip</mark> tion of ideal gas, Derivation of Ideal gas equation					
Week 11	Heat: Heat and internal energy, Units of heat, Mechanical equivalent of heat, Specific heat capacity, Calorimetry, Latent heat Work: State variables, Transfer variables, Work in thermodynamics, PV diagrams, Energy transfer.					
Week 12	The 1st law of thermodynamics: Isolated and open systems, Adiabatic processes, Adiabatic free expansion process Isobaric processes, Isochoric processes, Isothermal processes, Thermal expansion					
Week 13	Engines and refrigerators: Work to heat, Heat engine, Thermal efficiency of heat engine, Heat pump (refrigerators), Refrigerator cycle (Sterling), Coefficient of performance					
Week 14	2nd law of thermodynamics: Entropy Kelvin-Planck & Clausius forms, Reversible and irreversible processes Carnot engine and theorem, Carnot efficiency					
Week 15	Preparatory week before the final Exam					
Week 16	Preparatory week before the final Exam					

Learning and Teaching Resources

مصادر التعلم والتدريس

	Text	Available in the Library?
Required Texts	Electric Charge and Field, Guide to Semiconductor Engineering, Magnetic and Electric book. Publish Papers	Yes
Recommended Texts	Physics text book, Series of nanotechnology	
Websites	Elsevier, Springer, Physics library online, https://openlibrary.o	rg/subjects/physics ,

Grading Scheme

مخطط الدرجات

Group	Grade	التقدير	Marks (%)	Definition
	A - Excellent	امتياز	90 - 100	Outstanding Performance
Success Group	B - Very Good	ختر خدا	80 - 89	Above average with some errors
(50 - 100)	C - Good	جيد ا	70 - 79	Sound work with notable errors
(55 255)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings
	E - Sufficient	مقبول مقبول	50 - 59 11 11	Work meets minimum criteria
Fail Group	FX – Fail	راسب (قيد المعالجة)	(45-49)	More work required but credit awarded
(0 – 49)	F – Fail	ا ۲ ا راسب	(0-44)	Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.