

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al-Anbiyaa College of Engineering Aircraft Engineering Department

MODULE DESCRIPTOR FORM

Module Information					
Module Title	Fluid Mecha	nics	ENGIN AL	Module Deliver	у
Module Type	Core	, RSI OLLEO	OEERIA	7 lo	
Module Code	ENG232			Theory	
ECTS Credits	6	5		Tutorial	
SWL (hr/sem)	150		V ₃	**************************************	
Module Level		2	Semester o	of Delivery	3
Administering Department		Aircraft Engineering	College	Engineering	
Module Leader	Dr. Moham	med Aljibory	e-mail	Dr.mohamma.wahal	o@uokerbala.edu.iq
Module Leader's	Acad. Title	Professor	Module Le Qualificati		Ph.D.
Module Tutor	None	2017	e-mail	None	
Peer Reviewer Name			e-mail		
Review Committee Approval		01/06/2024	Version Nu	umber 2024	

Relation with Other Modules					
Prerequisite module	Prerequisite module ** Semester				
Co-requisites module	Co-requisites module None Semester				
Module Aims, Learning Outcomes and Indicative Contents					

Module Aims	 To develop problem solving skills and understanding of fluid mechanics theory through the application of techniques. Explain the concept of manometers and apply appropriate equations to determine pressures. Calculate the hydrostatic pressure force on a plane or submerged surface. Understand and describe the fundamental principles and governing equations of fluid. Analysis the Friction losses in pipes. Understand and describe the momentum Equation, applications of momentum, principal Analysis Explain Dimensional analysis and similarity
Module Learning Outcomes	 Recognize how fluid static effect on the system that contain fluid. List the various terms associated with fluid static from pressure and properties of fluid. Summarize the means to calculate the hydrostatic pressure force. Fluid dynamics involves the application of mathematical equations and models to describe fluid behavior. Fluid dynamics enables learners to analyze and interpret fluid flow patterns. They gain the ability to identify and understand different types of flow, including laminar flow, turbulent flow, and transitional flow. This understanding helps in predicting and characterizing fluid behavior in various scenarios. Summarize the means to. The Bernoulli Equation and it Application. Discuss Liner momentum Equation, Applications of momentum principle. Explain Friction losses in pipes and Analysis of piping system
Indicative Contents	 General introduction to fluid science, Dimensions, Dimensional Homogeneity, and Units, Viscosity, Vapor Pressure, cavitation, Surface Tension. [4 hrs] Pressure at a point. Variation of pressure in a static fluid with Depth. Pressure measurement (barometer pressure, Bourdon pressure gages, manometers). Hydrostatic Force on submerged Plane Surface. [16 hrs] Classification of fluid flow, The continuity equation. Euler's equation of motion along streamline. Bernoulli's equation and its applications. Pitot and Pitot static tube, Orifice and Venture Meter (Flow Measurement). Energy equation. [16 hrs] Laminar flow and Turbulent flow. Pump and turbine Major and secondary losses in pipes Connecting pipes in series, parallel and mixed. [16hrs]

5. Impact of a jet on a plane surface. Force due to flow round a curved Force due to the flow of fluid round a pipe bend. [10 hrs] 6. The Pi-theorem, Dimensionless parameters. Models study. [10 hrs]				
	Learning and Teaching Strategies			
Strategies The main strategy that will be adopted in delivering this modu students to pay attention to the subject by linking it to the daily a person lives and the importance of studying this course because on his real life real world.				

Student Workload (SWL)				
Structured SWL (h/sem) 78 Structured SWL (h/w) 5				
Unstructured SWL (h/sem) 72 Uns		Unstructured SWL (h/w)	4.8	
Total SWL (h/sem)	150 CE OF ENGINEE			

Module Evaluation						
		Time/ Number	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	4	20% (20)	3,6,9 <mark>,</mark> 12	All	
Formative	Assignments	2 •	10% (10)	5, <mark>8</mark>	All	
assessment	Projects / Lab.	Lab. 4	10% (10)	Contin <mark>u</mark> ous	All	
	Report	-4 D		-	-	
Summative	Midterm Exam	2 hrs.	10% (10)	7	All	
assessment	Final Exam	3 hrs.	50% (50)	16	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus)				
	Material Covered			
Week 1	Week 1 General definitions, Newton's law of viscosity, Surface tension, Vapor Pressure, cavitation.			
Week 2	Week 2 Pressure at a point in a static fluid, Variation of pressure in a static fluid with depth.			
Week 3	Week 3 Pressure measurement (barometer pressure, Bourdon pressure gauge ,manometers).			

وصف المقرر الدراسي

Week 4	Hydrostatic Force on submerged Plane Surface.			
Week 5	Classification of fluid flow, The continuity equation. Euler's equation of motion along streamline. Bernoulli's equation			
Week 6	Bernoulli's equation and its applications. Pitot and Pitot static tube, Orifice and Venture Meter (Flow Measurement).			
Week 7	Energy equation.			
Week 8	Laminar flow and Turbulent flow.			
Week 9	Major and secondary losses in pipes Connecting pipes in series, parallel and mixed.			
Week 10	Pump and turbine			
Week 11	Impact of a jet on a plane surface.			
Week 12	Force due to flow round a curved vane.			
Week 13	Force due to the flow of fluid round a pipe bend.			
Week 14	The Pi-theorem, Dimensionless parameters.			
Week 15	Models study.			
Week 16	Final Exam			

	Delivery Plan (Weekly Lab. Syllabus)				
	Material Covered				
Week 1	Exp. 1: Determ <mark>in</mark> ation of coefficient of viscosity for a liquid <mark>by</mark> stokes method.				
Week 2	Exp. 2: Borden gauge calibration.				
Week 3	Exp. 3: Center of pressure.				
Week 4	Exp. 4: Volume flow rate measurement/Flow through Venturi meter.				
Week 5	Exp. 5: Discharge through an orifice.				
Week 6	Exp. 6: Impact of jet.				
Week 7	Exp. 7: Friction loss along pipes.				

Learning and Teaching Resources			
	Available in the Library?		
Required Texts	White, "Fluid Mechanics", 7th Edition, McGraw Hill, 2011.	Yes	
	2- Cengel and Cimbala, Fluid Mechanics, Fundamentals		

وصف المقرر الدراسى

جامعة وارث الأنبياء / كلية الهندسة

	and Applications, 2nd Edition, McGraw Hill, 2013.	
Recommended Texts	Fundamentals of Fluid Mechanics, Bruce R. Munson, Ted H. Okiishi,	No
Websites https://www.coursera.org/browse/physical-science-and-engineering/mechanic		ineering/mechanical-

APPENDIX:

GRADING SCHEME						
Group Grade		التقدير	Marks (%)	Definition		
	A - Excellent	امتياز	90 - 10 <mark>0</mark>	Outstanding Performance		
g G	B - Very Good	جید جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	ختر	70 - 79	Sound work with notable errors		
(30 - 100)	D - Satisfactory	متوسط	60 - 69	Fair but with major shortcomings		
	E - Sufficient	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded		
(0 - 49)	F – Fail	راسب	(0-44)	Considerable amount of work required		
Note:		5): #				

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

