

Ministry of Higher Education and Scientific Research - Iraq

University of Warith Al-Anbiyaa College of Engineering Aircraft Engineering Department

MODULE DESCRIPTOR FORM

Module Information					
Module Title	Physics	Physics		Module Deliver	у
Module Type	Core	The Sol of		o O	
Module Code	ENG113			Theory Lab	
ECTS Credits	8			Tutorial	
SWL (hr/sem)	200		5 6		
Module Level		1	Semester of Delivery 1		1
Administering Department		Aircraft Engineering	College	Engineering	
Module Leader	Mohammed V	Vahhab Kazim	e-mail	dr.mohammad.waha	ıb@uokerbala.edu.iq
Module Leader's Acad. Title		Professor	Module Leader's Qualification		Ph.D.
Module Tutor		2017	e-mail	al /	
Peer Reviewer Name			e-mail		
Review Committee Approval		26/09/2024	Version Nu	ımber 2024	

Relation With Other Modules					
Prerequisite module	None	Semester			
Co-requisites module	Co-requisites module None Semester				
Module Aims, Learning Outcomes and Indicative Contents					

وصف المقرر الدراسي

	1. To assist students to understand the fundamental principles of				
	engineering mechanics (Statics and Dynamics) as applied to Physics.				
	2. To develop problem solving skills and understanding of principles				
	of Physics theory through the application of techniques as they				
	relate to the different fields of engineering.				
	3. To develop problem solving skills and understanding of Newton's				
Module Aims	law through the application of techniques.				
	4. To understand how analysis of vectors, forces, resultant, moments,				
	couples, and equilibrium in two and three dimensions' problems.				
	5. To comprehend how clarification of friction and analysis in two				
	dimensions' problems.				
	6. To understand the motion of particles (kinematics and kinetic), and				
	the ot <mark>her subjects as it sequen</mark> ced.				
	1. Enable the student to learn and understand the basic physical				
	concepts, mass, forces, quantities and vectors at Mechanical				
	Engineering				
	2. The student should understand and be able to apply Newton's Laws.				
	3. The student should Know the analysis of forces in Two Dimensions				
	4. The student should Know the analysis of System Isolation and the				
	Free-Body Diagram				
	5. The student should Know how can find the Equilibrium Conditions				
Module Learning	6. The student should Know the analysis of forces in Three Dimensions				
Outcomes	7. The student should know the analysis of the Friction forces and				
	their types, and the other subjects as it <mark>se</mark> quenced by the Course				
	Materials and Schedule.				
	8. The student should understand and be able to relate the kinematics				
	of particles				
	9- The student should study the Kinematics of particles Introduction and				
	Rectilinear motion of dynamics problems in straight line 10- The student should study the Kinematics of particles as a Curvilinear				
	motion.				
	11- The student should understand and be able to apply Newton's Laws to				
	particles to solve problems related to dynamic behavior.				
	Indicative content includes the following.				
	moteur to content merades the fonowing.				
	Part A - Introduction to Physics:				
Indicative Contents	The basic physical concepts, mass, forces, quantities and vectors at Mechanical				
	Engineering [6 hrs].				
	Part B - Statics				
	Two-Dimensional Force Systems:				

وصف المقرر الدراسي

External and Internal Effects, Principle of Transmissibility, Force Classification, Rectangular Components, Moments and Couples, and Resultants [18 hrs].

Equilibrium in Two Dimensions:

System Isolation, the Free-Body Diagram, and Equilibrium Conditions [12 hrs].

Friction:

Introduction, and type of friction, and Dry Friction [6 hrs].

Three-Dimensional Force Systems:

Rectangular Components, Moments and Couples, and Resultants [12 hrs].

Equilibrium in Three Dimensions:

System Isolation, the Free-Body Diagram, Equilibrium Conditions and the Categories of Equilibrium [7 hrs].

Part C - Kinematics of particles:

Rectilinear motion [5 hrs].

Curvilinear motion:

x-y coordinates, Normal – tangential coordinates, and Polar – coordinates [5 hrs].

Relative Motion (Translating Axes)

Relative motion, Motion relative to a frame in translation, and Constrained Motion of Connected Particles [5 hrs].

Part D - Kinetics of Particles:

Newton's 2nd law, Rectangular Components, Tangential and normal components, Radial and transverse components [6 hrs].

Kinetics of particles:

Introduction, Force, Mass, Acceleration, Newton's 2nd law, Rectangular components, Tangential and normal components, Radial and transverse components and problems [10 hrs].

Learning and Teaching Strategies

Strategies

Type something like: The main strategy that will be adopted in delivering this module is to encourage students' participation in the exercises, while at the same time refining and expanding their critical thinking skills. This will be achieved through classes, interactive tutorials and by considering type of simple experiments involving some sampling activities that are interesting to the students.

Student Workload (SWL)				
Structured SWL (h/sem) 108 Structured SWL (h/w) 7				
Unstructured SWL (h/sem)	92	Unstructured SWL (h/w)	6.2	
Total SWL (h/sem)	200	1		

Module Evaluation						
		Time/	Weight (Marks)	Week Due	Relevant Learning	
		Number			Outcome	
	Quizzes	4	20% (20)	3, 6, 9, 12	LO #1-11	
Formative	Assignments	2	10% (10)	5, 10	LO #1-11	
assessment	Projects / Lab.	Lab. 5	10% (10)	Continuous	LO #1, 2, 3, 4, 7, 10, 11	
	Report	18 COV	· -0 "/1/"	60 -	-	
Summative	Midterm Exam	2 hrs.	10% (10)	4 7	LO #1-11	
assessment	Final Exam	3 hrs.	50% (50)	-1 <mark>6</mark>	All	
Total assessment		100% (100 Marks)	Ø			

	Delivery Plan (Weekly Syllabus)				
	Material Covered				
Week 1	Introduction to Physics: Basic concepts, Newton's Law, and Vectors				
Week 2	Two-Dimensional Force Systems: External and Internal Effects, Principle of Transmissibility, and Force Classification				
Week 3	Two-Dimensional Force Systems: Rectangular Components, and Moments and Couples.				
Week 4	Two-Dimensional Force Systems: Resultants				
Week 5	Equilibrium in Two Dimensions: System Isolation and the Free-Body Diagram				
Week 6	Equilibrium in Two Dimensions: Equilibrium Conditions				
Week 7	Friction: Introduction, and type of friction, and Dry Friction.				
Week 8	Three-Dimensional Force Systems: Rectangular Components, and Moments and Couples.				
Week 9	Three-Dimensional Force Systems: Resultants				

وصف المقرر الدراسى

	Equilibrium in Three Dimensions:
Week 10	System Isolation and the Free-Body Diagram, and Equilibrium Conditions and the
	Categories of Equilibrium
Week 11	kinematics particles:
	Introduction and Rectilinear motion.
	Curvilinear motion:
Week 12	Plane Curvilinear Motion Rectangular Coordinates (x-y), Normal – tangential
	coordinates $(n-t)$, and Polar – coordinates $(r-\Theta)$.
	Relative Motion (Translating Axes)
Week 13	Motion relative to a frame in translation,
	Constrained Motion of Connected Particles
	Kinetics of particles:
Week 14	Introduction, Force, Mass, and Acceleration
	Newton's 2 nd law.
	Rectangular components.
	Kinetics of particles: WAR/
Week 15	Tangential and normal components.
	Radial and transverse components.
Week 16	Preparatory week before the Final Exam

Delivery Plan (Weekly Lab. Syllabus)					
	Material Covered				
Week 1	Exp. 1: THE STIFFNESS OF LINEAR SPRING (HOOKE'S LAW)				
Week 2	Exp. 2: FORCE RESULTANT OF TWO-DIMENSIONAL FORCE SYSTEMS				
Week 3	Exp. 3: STATIC FRICTION COEFFICIENT OF SIMILAR AND DISSIMILAR SURFACES				
Week 4	Exp. 4: ACHIEVING THE BASIC LAW OF THE ROTATIONAL MOVEMENT				
Week 5	Exp. 5:				
Week 6	Exp. 6:				
Week 7	Exp. 7: كليــــــــــــــــــــــــــــــــــــ				

Learning and Teaching Resources				
	Text Available in the Library?			
Required Texts	ENGINEERING MECHANICS VOLUME 1 STATICS EIGHTH EDITION (2016) VOLUME 2 DYNAMICS EIGHTH EDITION (2015)	Yes		

جامعة وارث الأنبياء / كلية الهندسة

	Publisher: John Wiley & Sons Singapore Pte. Ltd		
	Ву		
	James L. Meriam (Author), L. G. Kraige (Author), J. N.		
	Bolton (Author)		
	VECTOR MECHANICS FOR ENGINEERS: STATICS AND		
	DYNAMICS		
Recommended	Publisher: McGraw Hill; 12th edition (2018)		
Texts	by Ferdinand Beer (Author), E. Johnston (Author), David		
	Mazurek (Author), Phillip Cornwell (Author), Brian Self		
	(Author)		
Websites			

APPENDIX:

GRADING SCHEME						
Group	Grade	التقدير	Marks (%)	Definition		
	A - Excellent	امتيان •	90 - 100	Outstanding Performance		
a a	B - Very Good	جيد جدا	80 - 89	Above average with some errors		
Success Group (50 - 100)	C - Good	ختري	70 - 79	Sound work with notable errors		
	D - Satisfactory	🗕 متوسط	60 - 69	Fair but with major shortcomings		
	E - Suffic <mark>ie</mark> nt	مقبول	50 - 59	Work meets minimum criteria		
Fail Group	FX – Fail	مقبول بقرار	(45-49)	More work required but credit awarded		
(0-49)	F – Fail	راسب	(0-44)	Considerable amount of work required		
Note:			1			

NB Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.